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Though it is pedagogically beneficial to assume a point particle description of the nucleus when
studying the hydrogen atom, how will those results change once this assumption is changed?
This paper undergoes a first order perturbation theory approach of a finite sized nucleus with
a uniform distribution of charge. The energy correction factors for low energy levels and their
corresponding angular momenta are computed to determine the significance of a point-particle
assumption of the nucleus that is so often employed. Correlations between quantum numbers
and energy correction factors are made, and the strength of the largest correction factor is
evaluated.

I. INTRODUCTION

The method of attacking complicated, real physics
problems by simplifying their parts is a modus operandi
employed by all physicists. When studying the hydro-
gen atom in an undergraduate quantum mechanics class,
many assumptions are made about the system in order to
provide a simple, approachable potential that produces
an analytic solution. The point-particle assumption of
the nucleus is addressed this paper. Though the poten-
tial conveniently provides an analytic solution, it diverges
as r approaches 0. As a more realistic assumption, the
nucleus will instead be described with a finite size and
a uniform distribution of charge. This will produce an
energy potential that will require a different approach.
After producing the potential from the assumption of a
uniformly distributed charge over a finite sized nucleus,
the Hamiltonian is all but trivial to form.

Applying first order perturbation theory to evaluate
the size of the energy corrections implies that the origi-
nal radial wavefunctions need to be reproduced. Though
the method of calculating the energy correction terms is
straight forward, it does leave behind exponentials. This
expression will be expanded using a Taylor series that
can be truncated, as the high order terms diverge quickly.
Once this is done, an array of energy correction terms is
evaluated and analyzed.

II. FORMING THE POTENTIAL

When assuming the nucleus (proton) of the Hydrogen
atom is a point particle, all of its charge is concentrated
on a point located at r = 0, leading to the potential

V (r) = − e2

r
(1)

The graph of this potential can be seen by the solid
line in Figure 1. Though the potential diverges at r =

0, it does provide an analytic solution to the following
Hamiltonian:

H = p2

2m −
e2

r
(2)

Note, the Hamiltonian is formed by the addition the
kinetic energy term.

Writing out a more accurate Hamiltonian in the con-
ventional form, we can break it down into convenient
pieces

Hreal = p2

2m + Vreal(r)

= p2

2m −
e2

r +
[

e2

r + Vreal(r)
]

= H +Hpert

(3)

Now we can form our real Hamiltonian, Hreal, from our
analytic H and a new perturbation Hamiltonian, Hpert.
To find V (r), let’s not assume the nucleus is a point par-
ticle, but instead let’s make the less sophomoric, yet still
incomplete assumption that the nucleus has a uniform
distribution of charge over a finite radius, given by

ρ =
Q
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This finite nuclear size assumption leads to a new po-
tential
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This potential curve can be seen in Figure 1, repre-
sented by the dashed line.

Figure 1: The analytic potential curve can be seen by the solid line,
falling to -∞ as r → 0. The finite nuclear size potential can be seen as

the dashed line. Note how the two potentials separate at r = Rn.

Notice how the analytic potential and the real potential
curves separate only at r = Rn, due to the finite size
of the nucleus. As you can see, this potential is finite
when r = 0, however, this potential does not present
analytic solutions, and instead will be used to help with
consequent perturbation theory calculations.

III. THE PERTURBATION HAMILTONIAN

To form Hpert, one simply needs to subtract the theo-
retical potential, V (r), from finite nuclear size potential,
Vreal(r)

Hpert = Vreal(r)− V (r)
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where r ≤ Rn, K = Rn/a0, x = r/a0, and e is el-
ementary charge. Now we’ve conveniently written the
perturbation Hamiltonian as a dimensionless polynomial
with a factor out front that is approximately 2 · 13.6eV .

IV. ENERGY CORRECTIONS

Since the potential is radially symmetric, the angular
wavefunctions are trivial and only the radial wavefunc-
tions need to be produced. The exact work can be found
in the appendix, but the method is straightforward. Af-
ter accessing a library with working Laguerre polynomi-
als, these are differentiated appropriately to produce the
associated Laguerre polynomials. Next, each associated
Laguerre polynomial is multiplied by a factor of

e−
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(
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where n and l are the familiar principal quantum num-
ber and angular quantum number, respectively. This
constructs the normalized hydrogenic radial wavefunc-
tions. Checks are done to be sure they are normalized
and integrating properly. With the radial functions con-
structed, the perturbation Hamiltonian may be intro-
duced.

Using 1st order perturbation theory, we can calculate
the energy correction due to this finite nuclear size con-
sideration by

∆E(n, l) = 〈Ψ100|Hpert|Ψ100〉
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which is simply the expectation value of the perturba-
tion Hamiltonian while the system is in the unperturbed
state. Since the result involves exponentials, it’s much
more enlightening to take a Taylor series expansion and
to truncate the higher order terms.

V. RESULTS

Only the first five energy levels were computed, with
corresponding angular momenta. The truncated Taylor
series expansions can be seen in the appendix for consul-
tation. The correction factors reported are the first term
in these expansions, as the series diverges rapidly. The
correction factors for these energy levels are represented
in Figure 2.
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Figure 2: Each bar represents an energy orbital corresponding to
unique n and l quantum numbers. Atop each bar is the energy
correction factor for that orbital. Each l value contributes an

additional K2(l+1) factor to the correction term.

Each correction factor has a e2/a0 coefficient that is
approximately 27.2 eV , and a corresponding dimension-
less K factor ( K = Rn

a0
= 2.54 · 10−8 ) as depicted in the

figure.

VI. CONCLUSION

Though this is only a first order correction, many cor-
relations can be recognized to help understand the be-
havior of finite nuclear size corrections. Noting the rapid
decline of the scaling factor, this uniform distribution of
charge assumption gives the largest energy correction to
the lowest energy orbital, n = 1. This much should be in-
tuitive, considering that on average an electron is closer
to the nucleus in this lower energy orbital, and there-
for experiences this distribution of charge to a larger de-
gree than a more distant electron in the n = 4 orbitals.
Likewise, each increasing orbital angular momenta has

a much smaller correction factor. Again, with a higher
probability of being farther from the nucleus, the finite
size of the nucleus still approaches a point-particle like
effect.

How significant is the largest correction term? The
correction factor for the n = 1 energy orbital is 2/5, but
the dimensional factors need to be considered as well:
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Though this may not seem like a substantial correc-
tion term, experiments that aim to be highly accurate
would certainly need to consider it. As for higher energy
terms, especially high orbital angular momentum terms,
it’s significance decreases rapidly.

This procedure has shown that though the concept of
finite nuclear size does have an impact on the energy
spectrum of the hydrogen atom, for pedagogical reasons
it’s still very beneficial to study the point-like particle
assumption of the nucleus. The energy correction factors
become decrease rapidly in significance as the principal
quantum number, n, or the angular quantum number, l,
is increased. This massages one’s ego for having intuitive
understandings for quantum mechanical depictions, and
provides insight for other hydrogenic systems.
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